Vide Iconismi XVIII. Fig. II. Metiri altitudines ex umbra cum Artithmetica.
SIt altitudo AB, quae projiciat umbram B C. Primo. Metire in pedibus umbram hanc a C usque in B, et sit v. g. 30 pedum. Secundo. Erige perpendiculariter baculo D E cujuscunque longitudinis, divisum in decem (aut duodecim, aut quotvis alias) partes aequales, quae projiciat umbram EF. Tertio. Vide quot partium sit umbra EF, qualium D E est decem. Sit v. g. 12 partium. His factis, habes tres numeros notos, videlicet E F 12, D E 10, et C B 30. Ex his venies in cognitionem altitudinis B A per Regulam Trium,si dicas: F E 12, dat E D 10, quid dat C B 30? Nam si multiplices 30 per 10, et productum 300 dividas per 12; invenies in Quoto 25. Erit ergo altitudo B A 25 pedum.
Ratio est, quia triangula A B C, et D E F, sunt aequiangula,it consideranti patet. Ergo latera circa aequales anglos proportionalia sunt, per 4. sexti.
Vide Iconismi XVIII. Fig.III.
} Loco baculi divisi in decem, aut quotlibet alias partes, uti poteris filo cum perpendiculo GH, diviso per nodulos, aut alia ratione in decem aut duodecim partes aequales. Hoc enim filum si suspendum teneas, ut perpendiculum H leviter terram tangat; projiciet umbram H I. Ex partibus umbrae HI, ex partibus fili G H, et ex pedibus umbrae CB, venies ut antea in cognitionem altitudinis AB.
Vide Iconismi XVIII. Fig. II. Metiri altitudines ex umbra sine Arithmetica.
PRaxis haec facilior et ingeniosior est quam praecedens.Sit ergo ut antea altitudo A B, quae projiciat umbram C B 30 pedum. Vis scire,quot pedum sit altitudo AB. Operare sic. Primo. Accipe bacillum DE longum praecise uno pede, eumque erige