altitudo: et sic de reliquis, prout in dictae Tabellae primae facie anteriore apparet.Itaque si numerum pedum distantiae multiplices per 6, per 4, per 3, etc. habebis numerum pedum altitudinis.
Si ex latere verso CD abscindat filum partes 2, distantia K G est sextuplo major altitudine G F: si abscindat partes 3, distantia est quadruplo major altitudine:si partes 4 abscindat, distantia est triplo major, etc. prout in aversa facie ejusdem Tabellae primae apparet. Itaque si numerum pedum distantiae dividas per 6, per 4, per 3, etc. dabit pars sexta, quarta, tertia etc. numerum pedum altitudinis.
I. In primo modi operandi per umbram ad altitudinem projectam, reperitur praecise altitudo G F: at in secundo modi operandi per solam distantiam ad altitudine sine umbra illius, reperitur altitudo L F, cui adjiciienda est statura mensoris ad H usque ad B, aut a K usque ad B, quae aequalis est portioni G L, adjicienda altitudini L F, ut habeatur tota altitudo G F.
II. In utroque modo operandi promptius fere ac facilius reperitur altitudo per regulam Trium, quam ex alterutra facie Tabellae primae Geometricae. Cadat enim in statione H, filum perpendiculi in latus rectum B C, et abscindat partes quinque, sit autem distantia inter H et G pedum 20. Ex Tabella habetur, altitudinem esse duplo majorem et insuper duabus duodecimis. Itaque distantia debet duplicari, et adjici duae duodecimae, ut habeatur altitudo. Quotus autem quisque est, qui sciat quot pedes continenant viginti pedum? Si autem dicas: ut 5 ad 21, ita 10 ad aliud; ducasque 12 in 20, et productum 240 dividas per 5; Quotuns 48 indicabit altitudinem esse 48.
III. In utroque modo operandi potest tam diu recedi et accedi ad altitudinem, donec radiante Sole per dioptras, aut viso fastigio F per easdem, perpendiculi filum cadat in angulum C Quadrati penduli, ut sit in statione I: tunc enim semper distantia inter I et G est aequelis altitudini G F, nec ullo calculo Arithmetico est opus.