Difference between revisions of "Page:Organum mathematicum libris IX. explicatum (1668).djvu/135"
ArchivesPUG (talk | contribs) |
|||
Page body (to be transcluded): | Page body (to be transcluded): | ||
Line 5: | Line 5: | ||
''Usus pro Additione consistit in hoc, ut addendorum numerorum quaeratur in latere sinistro, alter in vertice Tabulae. Si ab uno pergas dextrorsum,ab altero deorsum; summa quaesita occurret in quadratulo concursus. Sic invenies, 4 et 8 efficere 12; item 3 et 13 efficere 16 etc.''<br> | ''Usus pro Additione consistit in hoc, ut addendorum numerorum quaeratur in latere sinistro, alter in vertice Tabulae. Si ab uno pergas dextrorsum,ab altero deorsum; summa quaesita occurret in quadratulo concursus. Sic invenies, 4 et 8 efficere 12; item 3 et 13 efficere 16 etc.''<br> | ||
<center>Annotatio III.</center><br> | <center>Annotatio III.</center><br> | ||
− | <center>Alius modus Additionis,qui simul probatio est prioris.</center><br> | + | <center>Alius modus Additionis, qui simul probatio est prioris.</center><br> |
''Alio etiam modo peradi potest Additio , incipiendo operationem a sinistra versus dexteram, et nihil mente retinendo. Quo modo si iteretur Additio priori modo facta,et inveniatur eadem summa; dubitari non potest , operationem fuisse sine errore peractam. Rem exemplis declaro a | ''Alio etiam modo peradi potest Additio , incipiendo operationem a sinistra versus dexteram, et nihil mente retinendo. Quo modo si iteretur Additio priori modo facta,et inveniatur eadem summa; dubitari non potest , operationem fuisse sine errore peractam. Rem exemplis declaro a | ||
facilioribus incipiendo.'' | facilioribus incipiendo.'' | ||
Line 14: | Line 14: | ||
[[Category:AKC Pages]] | [[Category:AKC Pages]] | ||
[[Category:Organum mathematicum (1668)]] | [[Category:Organum mathematicum (1668)]] | ||
− | [[Category: Organum mathematicum (1668)_Pages with maths elements]] | + | [[Category:Pages with maths elements]] |
+ | [[Category:AKC Pages with maths elements]] | ||
+ | [[Category:Organum mathematicum (1668)_Pages with maths elements]] |
Latest revision as of 11:37, 7 October 2020
Modus secundus fundatur in eodem illo axiomate, et insuper in hoc, quod, ablata parte una a toto, remaneat reliqua ,aut reliquae.
Tabula pro Additione arithmetica.
Sequens Tabula et pro Additione, et pro Subtractione servit. Potest construi etiam forma triangulari. Extendi quoque potest in infinitum, tam deorsum in longum, quam versus dexteram in latum; et tunc possent quilibet ad quoslibet numeros addi, et a quibus subtrahi ope Tabulae.
Usus pro Additione consistit in hoc, ut addendorum numerorum quaeratur in latere sinistro, alter in vertice Tabulae. Si ab uno pergas dextrorsum,ab altero deorsum; summa quaesita occurret in quadratulo concursus. Sic invenies, 4 et 8 efficere 12; item 3 et 13 efficere 16 etc.
Alio etiam modo peradi potest Additio , incipiendo operationem a sinistra versus dexteram, et nihil mente retinendo. Quo modo si iteretur Additio priori modo facta,et inveniatur eadem summa; dubitari non potest , operationem fuisse sine errore peractam. Rem exemplis declaro a facilioribus incipiendo.
Sint addendi numeri A. Incipe a sinistra, et dic: 5 et 5, faciunt 8; scribe ergo 8 infra. Dic iterum,3 et 4, faciunt 7; quae scribe infra; item 2 et 5, faciunt 7; quae scribe infra: item 3 et 6, faciunt 9; quae scribe infra :item 9 et 0, faciunt 9; quae scribe infra; demum 8 et 1, faciunt 9; quae scribe infra. Summa omnium erit numerus B.